25 OH Vitamin D Levels of Patients Living in Isparta, Turkey

Eurasian Clinical and Analytical Medicine Original Research

25 OH Vitamin D Levels of Patients Living in Isparta

Hasan Basri Savas¹, Betul Mermi Ceyhan², Fatih Gultekin¹

¹Department of Medical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Antalya ²Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey

Abstract

Aim: Vitamin D levels influence the risk of fracture, rickets, osteomalacia, and osteoporosis. Vitamin D protects the body against muscle weakness, helps regulate the heartbeat, strengthens the immune system and thyroid function, and is necessary for normal blood clotting. Vitamin D increases calcium absorption from the digestive tract, helps the accumulation of calcium in the bones and also accelerates the active transport of calcium. Humans obtain vitamin D from exposure to sunlight and from diet. Material and Method: The patients admitted to Suleyman Demirel University Faculty of Medicine Research and Application Hospital during a one-year period were examined to determine 25 OH vitamin D levels. 12,920 male and female patients were included in the study. Statistical analysis was performed with SPSS. Results: There was a significant difference between 25 OH vitamin D levels of patients in the winter season and the spring and summer seasons (<0.05). 25 OH vitamin D levels of men were significantly higher than those of women (<0.05). 25 OH vitamin D levels were low in 7248% of all patients (<20 ng/ml). The ratio of 25 OH vitamin D levels less than 10 ng/ml was found in 40.92% of the patients. Discussion: When assessing 25 OH vitamin D levels, the season of the year and sex of the patients should be taken into consideration.

Keywords

25 OH Vitamin D Deficiency; Human

Corresponding Author: Hasan Basri Savas, Medical Biochemistry Department, Alanya Alaaddin Keykubat University, Faculty of Medicine, Alanya, Antalya, Turkey. P: +90 242 518 11 44 · F: +90 242 518 11 99 · E-Mail: hasan.savas@alanya.edu.tr

How to cite this article: Hasan Basri Savas, Betul Mermi Ceyhan, Fatih Gultekin. 25 Oh Vitamin D Levels of Patients Living in Isparta, Turkey, Eu Clin Anal Med 2017;5[2]: 21-3.

D01:04328/ECAM.107 Received : 27.02.2017 Accepted : 14.03.2017 Published Online : 01.05.2017 Printed Online : 01.05.2017 Eu Clin Anal Med 2017;5(2): 21-33

Introduction

D vitamins play an important role in the bone metabolism and calcium and phosphorus regulation of the human body. Vitamin D levels influence the risk of fractures, rickets, osteomalacia, and osteoporosis. Vitamin D protects the body against muscle weakness. It helps regulate the heartbeat, strengthens the immune system and the thyroid function, and is necessary for normal blood clotting. Vitamin D increases calcium absorption from the digestive tract, helps the accumulation of calcium in the bones, and accelerates the active transport of calcium. Humans obtain vitamin D from exposure to sunlight and from their diet [1, 2]. Vitamin D deficiency has become a more common problem due to low sunlight intake due to indoor area life, clothing style, use of high-factor cream to prevent harmful effects of the sun, and seasonal changes [3]. Despite there being a lot of research on the lack of vitamin D and seasonal distribution in the literature, there had been no research done in the province of Isparta. This study will investigate the incidence and seasonal distribution of vitamin D deficiency in patients admitted to the SDU Medical Faculty Hospital in Isparta within a oneyear period. In this study, a possible relationship between vitamin D deficiency and seasonal distribution was shown in these patients and the groundwork for new studies and research on this topic was prepared.

Material and Methods

The present study was conducted upon the approval of Suleyman Demirel University, Medical Faculty, Head of Clinical Research Ethical Committee. During a one-year period, patients were evaluated for 25 OH vitamin D levels. 12,920 patients were included in the study, 4,019 males and 8,901 females. The SPSS package program was used for the statistical analysis. The significance limit was accepted as p <0.05.

Results

There was a significant difference in 25 OH vitamin D levels between patients in the winter season when compared with the spring and summer seasons (<0.05). The 25 OH vitamin D levels of men were significantly higher than the levels of the women (<0.05). 25 OH vitamin D levels were found low in 72.48% of all patients (<20 ng/ml). The ratio of 25 OH vitamin D levels was less than 10 ng/ml in 40.92% of the patients. All results are shown in Table 1-5.

Discussion

Vitamin D is one of the most important hormones for growth, development, and healthy skeletal structure throughout life. Plants and animals exposed to sunlight have the ability to synthesize vitamin D. Vitamin D is synthesized directly under the influence of sunlight [3, 4]. When assessing 25 OH vitamin D levels, the season of the year and the sex of patients should be taken into consideration. Vitamin D levels may also differ according to the measurement method. It is necessary to compare levels with measurements made by a similar method [5]. In studies similar to ours, the regional differences are an important

			۷	Total			
			low	normal	high	IULAI	
Sex	Male	Count %	2721	1258	40	4019	
		within sex	67.7%	31.3%	1.0%	100.0%	
	Female	Count %	6643	2158	100	8901	
		within sex	74.6%	24.2%	1.1%	100.0%	
Total		Count %	9364	3416	140	12920	
Toi		within sex	72.5%	26.4%	1.1%	100.0%	

Table 2. Seasons * Vitamin D Levels Groups Cross Tabulation

			Vit	Total		
			Low	Normal	High	
	Winter	Count	3056	1053	36	4145
		% within season	73.7%	25.4%	0.9%	100,0%
	Spring	Count	2741	865	31	3637
Seasons		% within season	75.4%	23.8%	0.9%	100,0%
Seas	Summer	Count	1552	729	31	2312
		% within season	67.1%	31.5%	1.3%	100.0%
	Autumn	Count	2015	769	42	2826
		% within season	71.3%	27.2%	1.5%	100.0%
Total	Count	9364	3416	140	12920	
	% within season	72.5%	26.4%	1.1%	100.0%	

Table 3. Comparison of Sex and Vitamin D Levels

	Group Statistics							
	Sex	N	Mean	Std. Deviation	Std. Error Mean	T test p		
Vitamin D	Male	4019	17.7325	12.67428	0.19992	0.001*		
	Female	8901	15.4431	13.43579	0.14241			

*. The mean difference is significant at the 0.05 level.

Table 4. Comparison of Season and Vitamin D Levels Descriptives Vitamin D

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean			Maxi-	Anova
					Lower Bound	Upper Bound	Minimum	mum	P
Winter	4145	16.1344	13.38538	.20791	15.7268	16.5420	2.30	95.00	0
Spring	3637	15.3236	12.75753	.21154	14.9088	15.7383	2.46	98.00	
Summer	2312	17:4557	13.51777	.28113	16.9044	18.0070	3.00	82.00	
Autumn	2826	16.1922	13.35182	.25116	15.6997	16.6847	3.00	70.00	
Total	12920	16.1552	13.24560	.11653	15.9268	16.3837	2.30	98.00	
*. The mean difference is significant at the 0.05 level.									

Table 5. Season and Vitamin D Levels Comparison Post Hoc Tests

Multiple Comparisons									
Dependent Variable: Vitamin D									
	(I) season	(J) season	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval			
	(I) season					Lower Bound	Upper Bound		
	Winter	Spring	.81087*	.30055	.007	.2217	1.4000		
		Summer	-1.32123*	.34337	.000	-1.9943	6482		
		Autumn	05780	.32270	.858	6903	.5748		
	Spring	Winter	81087*	.30055	.007	-1.4000	2217		
		Summer	-2.13210*	.35185	.000	-2.8218	-1.4424		
LSD		Autumn	86866*	.33171	.009	-1.5189	2185		
5	Summer	Winter	1.32123*	.34337	.000	.6482	1.9943		
		Spring	2.13210*	.35185	.000	1.4424	2.8218		
		Autumn	1.26344*	.37096	.001	.5363	1.9906		
	Autumn	Winter	.05780	.32270	.858	5748	.6903		
		Spring	.86866*	.33171	.009	.2185	1.5189		
		Summer	-1.26344*	.37096	.001	-1.9906	5363		

*. The mean difference is significant at the 0.05 level.

factor in the incidence of vitamin D deficiency [6]. Today, vitamin D deficiency is accepted as a worldwide epidemic [7]. The demand for 25-OH D testing, and thus the cost of testing, is increasing all over the world yearly [8]. For this reason, the diagnosis of vitamin D deficiency should be made correctly. A condition that seems to be a limitation of our research is that patients who are included in the study are not aware of whether they have taken vitamin D supplementation. However, the expected low level of 25-OH D levels in all patients suggests that most patients do not receive vitamin D supplementation. The number of patients in our research is adequate and in accord with the majority of similar investigations [6, 9]. As a result of this study, when assessing 25 OH vitamin D levels, the season of the year and the sex of the patients should be taken into consideration.

Ethical Issues: The present study was conducted upon the approval of Süleyman Demirel University, Medical Faculty, Head of Clinical Research Ethical Committee.

Remarks: The present study was submitted as a poster during the XXIV International Symposium on Morphological Sciences (ISMS) held in Istanbul, Turkey, September 2-6, 2015. An abstract of the poster was published in a special issue of Anatomy Journal in 2015.

Scientific Responsibility Statement

The authors declare that they are responsible for the article's scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

Animal and human rights statement

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No animal or human studies were carried out by the authors for this article.

Funding: None

Conflict of interest

None of the authors received any type of financial support that could be considered potential conflict of interest regarding the manuscript or its submission.

References

1. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357(3): 266-81.

 Lieben L, Carmeliet G, Masuyama R. Calcemic actions of vitamin D: effects on the intestine, kidney and bone. Best Pract Res Clin Endocrinol Metab 2011;25[4]:561-72.

3. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 2008;87(4):1080-6.

4. Holick MF. Vitamin D: A millenium perspective. J Cell Biochem 2003;88(2):296-307.

5. Chen H, McCoy LF, Schleicher RL, Pfeiffer CM. Measurement of 25(OH)D3 and 25(OH)D2 in human serum using liquid chromatography-tandem mass spectrometry and its comparison a radioimmunassay method. Clin Chem Acta 2008;391(1-2):6-12.

6. Öğüş E, Sürer H, Kılınç AŞ, Fidancı V, Yılmaz G, Dindar N, Karakaş A. D Vitamini Düzeylerinin Aylara, Cinsiyete ve Yaşa Göre Değerlendirilmesi. Ankara Med J 2015, 15(1):1-5 DOI:10.17098/ amj.88875

7. Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child 2008;93:512-7.

8. Zhao S, Gardner K, Taylor W, Marks E, Goodson N. Vitamin D assessment in primary care: changing patterns of testing. London J Prim Care (Abingdon) 2015;7(2):15–22.

9. Vurgun E, Evliyaoğlu O, Yıldırmak S. Kanıta Dayalı Laboratuvar: D Vitamini Yetersizlik Sınırlarının Belirlenmesi. Medical Bulletin of Haseki/Haseki Tip Bulteni 2016;54:2.